viernes, 20 de abril de 2007

TEORIAS DEL ORIGEN DE LA LUZ





El estudio de la luz ha derivado en logros de la intuición, la imaginación y el ingenio que no tienen parangón en ningún campo de la actividad mental; también ilustra mejor que ninguna otra rama de la física las vicisitudes de las teorías."
Sir J. J. Thomson, 1925.

CONCEPCIONES TEÓRICAS SOBRE LA NATURALEZA DE LA LUZ
Los antiguos filósofos ya conocían algunos hechos sobre la naturaleza y propagación de la luz. Así se atribuye a Euclides el descubrimiento de las leyes de la reflexión de la luz (300 años a.C.). Pero es a mediados del siglo XVII cuando aparecen casi conjuntamente dos teorías acerca de la naturaleza de la luz. El genial científico inglés Isaac Newton, en la segunda mitad del siglo XVII, y su compatriota contemporáneo Christian Huygens, desarrollaron la óptica y la teoría acerca de la naturaleza de la luz.

*TEORÍA CORPUSCULAR
Newton descubre en 1666 que la luz natural, al pasar a través de un prisma es separada en una gama de colores que van desde el rojo al azul. Newton concluye que la luz blanca o natural está compuesta por todos lo colores del arcoiris.
Isaac Newton propuso una teoría corpuscular para la luz en contraposición a un modelo ondulatorio propuesto por Huygens.
Supone que la luz está compuesta por una granizada de corpusculos o partículas luminosos, los cuales se propagan en línea recta , pueden atravesar medios transparentes y ser reflejados por materias opacas. Esta teoría explica la propagación rectilínea de la luz, la refracción y reflexión; pero no explica los anillos de Newton (irisaciones en las láminas delgadas de los vidrios), que sí lo hace la teoría de Huygens como veremos más adelante, ni tampoco los fenómenos de interferencia y difracción.
Newton, experimentalmente demostró que la luz blanca, al traspasar un prisma, se dispersa en rayos de colores y que éstos, a su vez, al pasar por un segundo prisma no se descomponen, sino que son homogéneos. De esta descomposición de la luz deduce y demuestra que al dejar caer los rayos monocromáticos sobre un prisma, éstos se recombinan para transformarse en luz blanca. Se desprende así que ésta resulta de una combinación varia de rayos coloreados que poseen diferentes grados de refrangibilidad; desde el violeta –el más refrangible- hasta el rojo –que tiene el menor índice de refracción -. La banda de los colores prismáticos forma el espectro, cuya investigación y estudio conduciría, en la segunda mitad del siglo XIX, a varios hallazgos ribeteados con el asombro.
*TEORÍA ONDULATORIA
Propugnada por Christian Huygens en el año 1678, describe y explica lo que hoy se considera como leyes de reflexión y refracción. Define a la luz como un movimiento ondulatorio semejante al que se produce con el sonido. Ahora, como los físicos de la época consideraban que todas las ondas requerían de algún medio que las transportaran en el vacío, para las ondas lumínicas se postula como medio a una materia insustancial e invisible a la cual se le llamó éter .
La presencia del éter fue el principal medio cuestionador de la teoría ondulatoria. En ello, es necesario equiparar las vibraciones luminosas con las elásticas transversales de los sólidos sin que se transmitan, por lo tanto, vibraciones longitudinales.
En aquella época, la teoría de Huygens no fue muy considerada, fundamentalmente, y tal como ya lo mencionamos, dado al prestigio que alcanzó Newton. Pasó más de un siglo para que fuera tomada en cuenta la Teoría Ondulatoria de la luz. Los experimentos del médico inglés Thomas Young sobre los fenómenos de interferencias luminosas, y los del físico francés Auguste Jean Fresnel sobre la difracción fueron decisivos para que ello ocurriera y se colocara en la tabla de estudios de los físicos sobre la luz, la propuesta realizada en el siglo XVII por Huygens.
la colaboración de Auguste Fresnel para el rescate de la teoría ondulatoria de la luz estuvo dada por el aporte matemático que le dio rigor a las ideas propuestas por Young y la explicación que presentó sobre el fenómeno de la polarización al transformar el movimiento ondulatorio longitudinal, supuesto por Huygens y ratificado por Young, quien creía que las vibraciones luminosas se efectuaban en dirección paralela a la propagación de la onda luminosa, en transversales. Pero aquí, y pese a las sagaces explicaciones que incluso rayan en las adivinanzas dadas por Fresnel, inmediatamente queda presentada una gran contradicción a esta doctrina, ya que no es posible que se pueda propagar en el éter la luz por medio de ondas transversales, debido a que éstas sólo se propagan en medios sólidos.
*TEORÍA ELECTROMAGNÉTICA
Fue desarrollada por quien es considerado el más imaginativo de los físicos teóricos del siglo XIX, nos referimos a James Clerk Maxwell (1831-1879). Este físico inglés dio en 1865 a los descubrimientos, que anteriormente había realizado el genial autodidacta Michael Faraday, el andamiaje matemático y logró reunir los fenómenos ópticos y electromagnéticos hasta entonces identificados dentro del marco de una teoría de reconocida hermosura y de acabada estructura. En la descripción que hace de su propuesta, Maxwell propugna que cada cambio del campo eléctrico engendra en su proximidad un campo magnético, e inversamente cada variación del campo magnético origina uno eléctrico. Dado que las acciones eléctricas se propagan con velocidad finita de punto a punto, se podrán concebir los cambios periódicos - cambios en dirección e intensidad - de un campo eléctrico como una propagación de ondas. Tales ondas eléctricas están necesariamente acompañadas por ondas magnéticas indisolublemente ligadas a ellas. Los dos campos, eléctrico y magnético, periódicamente variables, están constantemente perpendiculares entre sí y a la dirección común de su propagación. Son, pues, ondas transversales semejantes a las de la luz. Por otra parte, las ondas electromagnéticas se transmiten, como se puede deducir de las investigaciones de Weber y Kohlrausch, con la misma velocidad que la luz. De esta doble analogía, y haciendo gala de una espectacular volada especulativa Maxwell termina concluyendo que la luz consiste en una perturbación electromagnética que se propaga en el éter. Ondas eléctricas y ondas luminosas son fenómenos idénticos.
La luz es, de acuerdo a la visión actual, una onda, más precisamente una oscilación electromagnética, que se propaga en el vacío o en un medio transparente, cuya longitud de onda es muy pequeña, unos 6.500 Å para la luz roja y unos 4.500 Å para la luz azul. (1Å = un Angstrom, corresponde a una décima de milimicra, esto es, una diez millonésima de milímetro).
Por otra parte, la luz es una parte insignificante del espectro electromagnético. Más allá del rojo está la radiación infrarroja; con longitudes de ondas aún más largas la zona del infrarrojo lejano, las microondas de radio, y luego toda la gama de las ondas de radio, desde las ondas centimétricas, métricas, decamétricas, hasta las ondas largas de radiocomunicación, con longitudes de cientos de metros y más. Por ejemplo, el dial de amplitud modulada, la llamada onda media, va desde 550 y 1.600 kilociclos por segundo, que corresponde a una longitud de onda de 545 a 188 metros, respectivamente.


Espectro electromagnético.- La región correspondiente a la luz es una disminuta ventana en todo el espectro. La atmósfera terrestre sólo es transparente en la región óptica y de ondas de radio. El infrarrojo se puede observar desde gran altura con globos o satélites, al igual que los rayos g, rayos X, y la radiación ultravioleta.

En física, se identifica a las ondas por lo que se llama longitud de onda, distancia entre dos máximos y por su frecuencia, número de oscilaciones por segundo, que se cuenta en un punto, y se mide en ciclos por segundo (oscilaciones por segundo). El producto de ambas cantidades es igual a la velocidad de propagación de la onda.

Representación de una onda. Se llama longitud de onda a la distancia entre dos "valles" o dos "montes".

bibliografia:http://www.astrocosmo.cl/electrom/electrom-02.htm




















































































































































































miércoles, 11 de abril de 2007

Primera Tarea:TERMODINAMICA.

*Enuncie la Ley Cero de la Termodinámica:
Si dos sistemas distintos están en equilibrio termodinámico con un tercero, también tienen que estar en equilibrio entre sí.
Si uno de estos sistemas se pone en contacto con un entorno infinito situado a una determinada temperatura, el sistema acabará alcanzando el equilibrio termodinámico con su entorno, es decir, llegará a tener la misma temperatura que éste. (El llamado entorno infinito es una abstracción matemática denominada depósito térmico; en realidad basta con que el entorno sea grande en relación con el sistema estudiado).

*Exprese los 2 enunciados principales que definen a la Segunda Ley de la Termodinámica:
La segunda ley de la termodinámica, que es una generalización de la experiencia, es una exposición cuyos artificios de aplicación no existen. Se tienen muchos enunciados de la segunda ley, cada uno de los cuales hace destacar un aspecto de ella, pero se puede demostrar que son equivalentes entre sí. Clausius la enuncio como sigue: No es posible para una máquina cíclica llevar continuamente calor de un cuerpo a otro que esté a temperatura más alta, sin que al mismo tiempo se produzca otro efecto (de compensación). Este enunciado desecha la posibilidad de nuestro ambicioso refrigerador, ya que éste implica que para transmitir calor continuamente de un objeto frío a un objeto caliente, es necesario proporcionar trabajo de un agente exterior. Por nuestra experiencia sabemos que cuando dos cuerpos se encuentran en contacto fluye calor del cuerpo caliente al cuerpo frío. En este caso, la segunda ley elimina la posibilidad de que la energía fluya del cuerpo frío al cuerpo caliente y así determina la dirección de la transmisión del calor. La dirección se puede invertir solamente por medio de gasto de un trabajo.
Kelvin (con Planck) enuncio la segunda ley con palabras equivalentes a las siguientes: es completamente imposible realizar una transformación cuyo único resultado final sea el de cambiar en trabajo el calor extraído de una fuente que se encuentre a la misma temperatura. Este enunciado elimina nuestras ambiciones de la máquina térmica, ya que implica que no podemos producir trabajo mecánico sacando calor de un solo depósito, sin devolver ninguna cantidad de calor a un depósito que esté a una temperatura más baja.

tomado de :http://soko.com.ar/Fisica/Termodinamica.htm

*Comente qué se entiende por muerte térmica del Universo:
Muerte Térmica del Universo
La primera parte del primer principio de la termodinámica - tesis sobre la existencia de la entropía y su invariabilidad en los procesos reversibles- ya no produce en nadie duda alguna. Una situación diferente se produjo con otra de las partes de este principio - tesis sobre el inevitable aumento de la entropía en procesos reales irreversibles. La discusión acerca del principio de crecimiento de la entropía y de los límites de su utilización comenzó desde el preciso momento en que Clausius lo formuló. El motivo reside en que él limitó el campo de aplicación del principio de crecimiento de la entropía no a sistemas aislados de dimensiones finitas, sino, ni más ni menos, que a todo el. Universo. Esto condujo inevitablemente a consecuencias de gran alcance.El calor en su paso constante de un cuerpo más caliente a otro más frío y tratando con ello de equilibrar las diferencias de temperaturas existentes, paulatinamente se distribuirá de una manera más uniforme y llegará también el equilibrio conocido entre e1 calor de radiación y el de los cuerpos. Y por fin, respecto a su disposición molecular, los cuerpos se aproximarán a ciento estado, en el cual la dispersión total de la temperatura dominante será la mayor posible». Y a continuación: «Nosotros, por consiguiente, debernos deducir la conclusión de quo en todos los fenómenos naturales el valor total de la entropía en todo momento puede crecer, pero no disminuir y por tanto obtenemos, como expresión abreviada del proceso de transformación que transcurre siempre y en todas partes, la siguiente tesis: la entropía del Universo tiende a cierto máximo.
tomado de :http://www.geocities.com/librosmaravillosos/tecnica/perpetuum/cap04_01.html

*Explique que es un proceso adiabático y uno no adiabático:
Proceso adiabático: es en el cual el sistema no gana ni pierde calor. Por ejemplo un sistema perfectamente aislado o bien realizando la transformación rápidamente, el flujo de calor es lo suficientemente lento para que cualquier proceso suficientemente rápido pueda considerarse como adiabático. También se considera que es el proceso en el cual no existe ninguna transferencia de calor del sistema con el medio exterior. Por lo que para un proceso adiabático:El proceso no adiabático es la diferencia U-W es no nula con lo que llamamos calor Q a esta diferenciaU-W=Q
tomado de:http://personal.redestb.es/juan_villa/primer%20principio%20(t).pdf

*Describa el concepto de energía interna de un sistema:
La energía interna de un sistema, es el resultado de la energía cinética de las moléculas o átomos que lo constituyen, de sus energías de rotación y vibración, además de la energía potencial intermolecular debida a las fuerzas de tipo gravitatorio, electromagnético y nuclear, que constituyen conjuntamente las interacciones fundamentales. Al aumentar la temperatura de un sistema, sin que varíe nada más, aumenta su energía interna.Convencionalmente, cuando se produce una variación de la energía interna sin que se modifique la composición química del sistema, se habla de variación de la energía interna sensible. Si se produce alteración de la estructura atómica-molecular, como es el caso de las reacciones químicas, se habla de variación de la energía interna química. Finalmente, en las reacciones de fisión y fusión se habla de energía interna nuclear.En todo sistema aislado (que no puede intercambiar energía con el exterior), la energía interna se conserva: Primer Principio de la Termodinámica o Principio de Conservación de la energía.Cuando hablamos en términos de procesos por los cuales pase determinada sustancia : ejemplo gas ideal , podemos decir que la energía interna solo depende del estado inicial y el estado final , por lo que se considera una función de estado.
tomado de:http://es.wikipedia.org/wiki/Energía_interna

*Cite 3 fuentes de energía térmica y cuáles son las ventajas que presentan el uso de cada una de ellas:
Física clásica
En Mecánica:
Energía mecánica que es la combinación o suma de los siguientes tipos:
Energía cinética: debida al movimiento.
Energía potencial la asociada a la posición dentro de un campo de fuerzas conservativo como por ejemplo:
Energía potencial gravitatoria
Energía potencial elástica, debida a deformaciones elásticas, también una onda es capaz de transmitir energía al desplazarse por un medio elástico.